

Institut für Mikrotechnologie der Gottfried Wilhelm Leibniz Universität Hannover (Hrsg.)

CHARMA

Messtechnik für die fertigungsgerechte Charakterisierung magnetischer Mikrobauteile

Institut für Mikrotechnologie der Gottfried Wilhelm Leibniz Universität Hannover (Hrsg.)

CHARMA

Messtechnik für die fertigungsgerechte Charakterisierung magnetischer Mikrobauteile

Impressum

© 2011 Steinbeis-Edition

Alle Rechte der Verbreitung, auch durch Film, Funk und Fernsehen, fotomechanische Wiedergabe, Tonträger jeder Art, auszugsweisen Nachdruck oder Einspeicherung und Rückgewinnung in Datenverarbeitungsanlagen aller Art, sind vorbehalten.

Institut für Mikrotechnologie der Gottfried Wilhelm Leibniz Universität Hannover (Hrsg.) CHARMA – Messtechnik für die fertigungsgerechte Charakterisierung magnetischer Mikrobauteile

1. Auflage 2011 | Steinbeis-Edition, Stuttgart ISBN 978-3-941417-35-9

Satz: Steinbeis-Edition Titelbild: Institut für Mikrotechnologie der Gottfried Wilhelm Leibniz Universität Hannover Druck: Frick Werbeagentur / Frick Digitaldruck, Krumbach

Steinbeis ist weltweit im Wissens- und Technologietransfer aktiv. Zum Steinbeis-Verbund gehören derzeit rund 800 Steinbeis-Unternehmen sowie Kooperations- und Projektpartner in 50 Ländern. Das Dienstleistungsportfolio der fachlich spezialisierten Steinbeis-Unternehmen im Verbund umfasst Beratung, Forschung & Entwicklung, Aus- und Weiterbildung sowie Analysen & Expertisen für alle Management- und Technologiefelder. Ihren Sitz haben sie überwiegend an Forschungseinrichtungen, Universitäten und Hochschulen.

Dach des Steinbeis-Verbundes ist die 1971 ins Leben gerufene Steinbeis-Stiftung, die ihren Sitz in Stuttgart hat. Die Steinbeis-Edition verlegt ausgewählte Themen aus dem Steinbeis-Verbund.

126219-2011-01 | www.steinbeis-edition.de

Vorwort

Der vorliegende Bericht entstand während der dreijährigen Laufzeit des durch das BMBF geförderten Verbundprojektes "Messtechnik für die fertigungsgerechte Charakterisierung magnetischer Mikrobauteile" (CHARMA). Die Arbeiten wurden im Zeitraum vom 1. Januar 2005 bis zum 31. Dezember 2007 durchgeführt. Unser Dank gilt dem BMBF, das die Durchführung dieses Projektes ermöglichte, und der VDI/VDE-Innovation + Technik GmbH für die Betreuung während der Projektdurchführung.

Ziel des Verbundprojektes war die Entwicklung von Messverfahren zur signifikanten Verbesserung der Qualitätssicherung bei der Fertigung von Mikrobauteilen. Die zu entwickelnden Messverfahren sollten es einerseits gestatten, zu einer frühen Beurteilung des Qualitätsniveaus eines Wafers zu gelangen. Andererseits sollten messtechnische Möglichkeiten zur Qualitätssicherung des fertigen Wafers bzw. ohne Waferprozess hergestellter fertiger Bauteile geschaffen werden.

Für die Messung von Schichtgeometrien und Schichtzusammensetzung auf Waferniveau wurde hierbei ein Verfahren abtragender Schichtpräparation mittels fokussiertem Ionenstrahlätzens (FIB) in Kombination mit bildgestützter Schichtdickenvermessung und Röntgen-Elementanalyse zur Bestimmung der Schichtzusammensetzung untersucht. Das zu entwickelnde FIB-Analysegerät sollte dabei in den Fertigungsprozess integrierbar sein und alle notwendigen Analysemöglichkeiten bieten. Die wissenschaftlich-technischen Ziele waren hierbei Entwicklung eines FIB-basierten Präparationsverfahrens, Entwicklung eines Testkonzepts zur prozessintegrierten Qualitätskontrolle und Erprobung des Verfahrens an Demonstratorbauteilen.

Als Erweiterung geometrischer und chemischer Schichtanalyse wurde im Rahmen des Projektes ein neuartiger Sensor zur Messung magnetischer Eigenschaften von Mikrostrukturen entwickelt. Beispiele, bei denen die magnetischen Eigenschaften von Funktionsschichten von großer Bedeutung sind, sind anisotrop-magnetoresistive (AMR-)Sensoren und giant-magnetoresistive (GMR-)Sensoren in Winkel- und Positionsmessungen und in der Datenspeichertechnik. Für die Qualitätssicherung solcher dünnfilmtechnisch erzeugter und strukturierter Schichten ist die Bestimmung der magnetischen Hysteresekurve von großem Interesse, die Aussagen über magnetische Materialeigenschaften wie Sättigungsflussdichte, Remanenz, Koerzivität und magnetische Permeabilität liefert. Kernpunkt der Arbeiten war dabei die Entwicklung eines neuartigen Mikro-Hysteresemssensors und der notwendigen messtechnischen Verfahren zu seinem Einsatz in der Qualitätssicherung. Ergänzend wurde eine Möglichkeit zur Schaffung einer dreidimensionalen Messmöglichkeit auf Waferniveau untersucht. Hierfür wurde ein mehrachsiges Messsystem entwickelt, in das bei Bedarf ein dünnfilmtechnisch gefertigter Mikroaktor integriert werden kann. Die Auslegung und Fertigung dieses Aktors war ebenfalls Aufgabe in diesem Projekt.

Garbsen im September 2008

Prof. Dr.-Ing. H. H. Gatzen

Inhaltsverzeichnis

Ve	VorwortIII				
1	Sono	itec Cr	nhH	1	
1	1 1	Wisser	nschaftlich-technische Zielsetzung	1	
	1.1	1 1 1	Wissenschaftlich-technische Zielsetzung AP1	1	
		112	Wissenschaftlich-technische Zielsetzung AP2/3	1	
	1.2	Wisser	nschaftlich-technische Ergebnisse		
		1.2.1	Inbetriebnahme der quantitativen EDX-Analyse		
		1.2.2	Dataloader Software	2	
		1.2.3	Geometrische Analysen		
		1.2.4	Stöchiometrische Analysen	6	
		1.2.5	Innovativer MR-Stromsensor	9	
		1.2.6	Anforderungsdefinition für die 3D-Messmaschine	17	
		1.2.7	Test Samples für die 3D-Messmaschine		
	1.3	Einsch	nätzung des Projekterfolges		
		1.3.1	AP1	18	
		1.3.2	AP2/3	19	
	1.4	Fortsc	hreibung des Verwertungsplans	19	
	1.5	Schutz	zrechtsanmeldungen	20	
	1.6	Veröff	entlichungen	20	
2	X-F	AB AG.		21	
	2.1	Wisser	nschaftlich-technische Zielsetzung	21	
	2.2	Wisser	nschaftlich-technische Ergebnisse		
		2.2.1	Zusammenfassung		
		2.2.2	FIB-Präparationen		
		2.2.3	Ermittlung der Membrandicken über den gesamten Wafer		
		2.2.4	Vergleich der verschiedenen Messverfahren		
		2.2.5	Untersuchung von FIB-Präparationen im weiteren Waferproz	ess28	
	2.3	Einsch	nätzung des Projekterfolges	29	
	2.4	Fortsc	hreibung des Verwertungsplans		
	2.5	Schutz	zrechtsanmeldungen	29	
	2.6	Veröff	entlichungen	29	

3	Spe	zifizierı	ıng, Entwicklung und Herstellung eines fluidischen Chips	mit
	mag	netisch	en Strukturelementen sowie Verifizierung einer magnetisn	nus-
	basi	erten N	1essmethode	
	3.1	Wisser	nschaftlich-technische Zielsetzung	
	3.2	Wisser	nschaftlich-technische Ergebnisse	
		3.2.1	Entwicklung mikromagnetischer Hysteresemessungen:	
			Design, Konstruktion und Herstellung von Fluidchips	
		3.2.2	Schnittstellendefinition	
		3.2.3	Entwicklung von 3D-Messtechnik für mikromagnetische	
			Bauteilanalyse: Formeinsätze	
		3.2.4	Entwicklung von 3D-Messtechnik für mikromagnetische	
			Bauteilanalyse: Herstellung von Formeinsätzen	
			mit definierten Fehlstellen	
		3.2.5	Versuche zur Herstellung dreidimensionaler Formeinsätze	
			mit definierten Lunkern	
		3.2.6	Entwicklung von 3D-Messtechnik für mikromagnetische	
			Bauteilanalyse: Herstellung von 3D-Formeinsätzen	
			mit definierten Fehlstellen	
	3.3	Einsch	ätzung des Projekterfolges	
	3.4	Währe	end des Vorhabens bekanntgewordener Fortschritt	
		auf die	esem Gebiet bei anderen Stellen	
	3.5	Schutz	rechtsanmeldungen	
	3.6	Veröff	entlichungen	
4	Antr	iebs- u	nd Steuerungstechnik für 3D-Messtechnik	
	4.1	Wisser	nschaftlich-technische Zielsetzung	
		4.1.1	Aufgabenstellung	
		4.1.2	Voraussetzungen, unter denen das Vorhaben durchgeführt w	rurde 45
		4.1.3	Planung und Ablauf des Vorhabens	
	4.2	Wisser	schaftlich-technische Ergebnisse	
		4.2.1	Zusammenarbeit mit anderen Stellen	
	4.3	Einsch	ätzung des Projekterfolges	
		4.3.1	Verbesserung des Verhaltens eines 2D-Direktantriebes	
			als Plattform für die Messzelle	
		4.3.2	Anforderungen an die Messzelle	
	4.4	Fortsc	hreibung des Verwertungsplans	
		4.4.1	Verwertbarkeit der Ergebnisse	

	4.5	Schutzrechtsanmeldunge	en	53
	4.6	Veröffentlichungen		53
5	Gru	ndsatzuntersuchungen zi	u Sensor-/Aktorprinzinien	
/	und	Sensorkorrektur	d Sensor / Interprinzipien	55
	5.1	Wissenschaftlich-technis	che Zielsetzung	
	5.2	Wissenschaftlich-technis	sche Ergebnisse	55
		5.2.1 Analyse der Eige	nschaften magnetischer Schichten und Opti-	
		mierung von Ser	nsorparametern mittels Simulationsrechnungen	155
		5.2.2 Auslegung eines	elektromagnetischen Mikroaktors unter	
		Anwendung von	2D- und 3D-FEM-Simulationen	69
	5.3	Einschätzung des Projek	terfolges	72
	5.4	Fortschreibung des Verw	vertungsplans	73
	5.5	Schutzrechtsanmeldunge	en	73
	5.6	Veröffentlichungen		73
6	Ent			
0	Mik	ro- und Nanometerschic	hten	er 75
	6.1	Wissenschaftlich-technis	sche Zielsetzung	75
	6.2	Der Demonstrator	0	
		6.2.1 Hysteresemessur	ng nach dem Integrationsprinzip	
		mit sinusförmige	em Erregerstrom	76
		6.2.2 Positionier- und	Antastmechanik	77
		6.2.3 Messelektronik		78
	6.3	Software zur Ablaufsteue	erung und Datenverarbeitung	80
		6.3.1 Unterstützende I	Funktionalitäten	81
		6.3.2 Kommunikation	sstruktur	81
	6.4	Wissenschaftlich-technis	che Ergebnisse	84
	6.5	Einschätzung des Projek	terfolges	85
	6.6	Fortschreibung des Verw	vertungsplans	85
	6.7	Schutzrechtsanmeldunge	en	85
	6.8	Veröffentlichungen		86
7	ГIР	Drängrationstachnil- C:	MST Wafaranalwa und Kampanantan	
/	fiir	-1 Taparationsteennik Tu mikromagnetische 3D-N	Aesstechnik	
	141	in the serie solution of the s		0/

		5	
7.1	AP1 "	Entwicklung FIB-Präparation und REM/EDX-Analyseverfahren ⁶	"87
	7.1.1	Wissenschaftlich-technische Zielsetzung	87

		7.1.2	Wissenschaftlich-technische Ergebnisse	
		7.1.3	Einschätzung des Projekterfolges für das AP1	96
	7.2	AP2 "	Entwicklung mikromagnetische Hysteresemessung"	97
		7.2.1	Wissenschaftlich-technische Zielsetzung	97
		7.2.2	Wissenschaftlich-technische Ergebnisse	97
		7.2.3	Einschätzung des Projekterfolges für das AP2	
	7.3	AP3 "I	Entwicklung 3D-Messtechnik für mikromagnetische	
		Bautei	lanalyse"	
		7.3.1	Wissenschaftlich-technische Zielsetzung	
		7.3.2	Wissenschaftlich-technische Ergebnisse	
		7.3.3	Einschätzung des Projekterfolges für AP3	
		7.3.4	Schutzrechtsanmeldungen	
		7.3.5	Veröffentlichungen	
		7.3.6	Literatur	121
8	Entv	vicklun	gsziele	
	8.1	Design	n und FEM Analyse des Läufers	
		8.1.1	Design und Optimierung des Federsystems	
		8.1.2	Design des Läufers	
		8.1.3	Magnetische Kopplung zwischen Läufer und Stator	
		8.1.4	Design der Metallisierungsebene	
	8.2	Techn	ologieentwicklung	
	8.3	Monta	ıge	
	8.4	Funkt	ionstest	

Abbildungsverzeichnis

Abb. 1:	Funktionsprinzip der Data Loader Software.	2
Abb. 2:	Eingabemaske der Data Loader Software	2
Abb. 3:	FIB-Schnitt durch eine Drucksensor-Membran (Ionenbild).	2
Abb. 4:	Membran-Schichtdicke vs. Wafer-Region.	2
Abb. 5a:	Liftoff-Prozess vor Optimierungsschritt. Links: Photolack-Struktur nach Metall-Deposition. Rechts: Metallstruktur mit Fencing nach Liftoff	3
Abb. 5b:	Optimierter Liftoff-Prozess. Links: Photolack-Struktur nach Metall- Deposition. Rechts: Metallstruktur mit sauberer Kantenstruktur nach Liftoff.	4
Abb. 6:	NiFe-Magnetjoch mit Schreibspule. Ergebnis der quantitativen EDX- Analyse für den rosa umrandeten Bereich: 52.0 at % Ni, 48.0 at % Fe	5
Abb. 7:	Mittels Business Objects erzeugtes Trendchart für Magnetjoch Composition.	7
Abb. 8:	EDX Line Scan über die Begrenzung zwischen Ausgleichsfläche (links) und Flux Guide (rechts) hinweg. Im Graben zwischen den beiden Ni/Fe-Schichten erscheint das Signal von Al ₂ O ₃ -Passivierungsschichten und Si-Substrat.	8
Abb. 9:	Chip-Layout des CHARMA Stromsensors. Rot: MR-Streifen, blau: Barber-Pole/Verdrahtungsebene, magenta: Kompensationsleiter, violett: Flipp-Leiter	9
АЬЬ. 10:	Schematischer Querschnitt durch den CHARMA Stromsensor. Rot: MR-Streifen. Blau: Verdrahtungsebene. Gelb: Anschlusspads. Orange: Kompensationsleiter (C1) und Flipp-Leiter (C2). Türkis: Grundisoliserung (Gap1) und Zwischenisolierung 1 (Gap2). Violett: Zwischenisolierung 2 (BCB1) und Deckpassivierung (BCB2)	10
Abb. 11:	3D-geometrische Einflussgrößen auf den Kompensationsfaktor in einem MR-Stromsensor.	11
Abb. 12:	Kompensationsfaktor in Abhängigkeit vom vertikalen Abstand A_MR [m] zwischen Kompensationsleiter und MR-Streifen. Rechnung für $b_{komp} = 8,0 \ \mu m, \ b_{rück} = 7,0 \ \mu m, \ d_{komp} = d_{rück} = 2,2 \ \mu m, \ b_{MR} = 7,0 \ \mu m, \ A_{rück} = 5,0 \ \mu m, \ I_{komp} = 1 \ mA$.	11
Abb. 13:	Kompensationsfaktor in Abhängigkeit vom lateralen Versatz L_just [m] zwischen Kompensationsleiter und MR-Streifen. Rechnung für $b_{komp} = 8,0 \ \mu m, \ b_{rück} = 7,0 \ \mu m, \ d_{komp} = d_{rück} = 2,2 \ \mu m, \ b_{MR} = 7,0 \ \mu m, \ A_{rück} = 5,0 \ \mu m, \ A_{MR} = 0,5 \ \mu m, \ I_{komp} = 1 \ m A$	12

Abb.	14:	Kompensationsfaktor in Abhängigkeit von der Breitenzunahme x [m]	
		der Kompensationsleiter und Rückleiter. Rechnung für	
		$b_{komp} = 8,0 \ \mu m + x, \ b_{rück} = 7,0 \ \mu m + x, \ d_{komp} = d_{rück} = 2,2 \ \mu m,$	
		$b_{MR} = 7,0 \ \mu m, A_{rück} = 5,0 \ \mu m, A_{MR} = 05 \ \mu m, I_{komp} = 1 \ mA$	13
Abb.	15:	FIB-Schnitt quer zu den MR-Streifen und Kompenationsleitern	
		(Ionenbild) nach Aufbringen der Zwischenisolierung 2 (BCB1).	
		Die Probe wurde zusätzlich mit 20 nm Au abgedeckt, um Aufladungs-	
		effekte bei der Bildgebung zu vermeiden. Unter den grobkörnigen	
		Kompensationsleitern sind die linienförmigen MR-Streifen und	
		feinkörnige Barber Poles sichtbar.	14
Abb.	16:	FIB-Schnitt quer zur Flippleiterstruktur (SEM-Bild) nach Aufbringen	
		der Deckpassivierung (BCB2). Strukturen von unten nach oben:	
		NiFe MR-Streifen + Cu Barber Poles, Al ₂ O ₃ -Zwischenisolierung 1,	
		Cu-Kompensationsleiter, BCB-Zwischenisolierung 2, Cu-Flippleiter,	
		BCB-Passivierung	15
Abb.	17:	Hysteresekurven einer 20 nm Permalloy-Schicht, gemessen in unter-	
		schiedliche Richtungen. Oben: vor Prozess-Optimierung, Unten:	
		nach Prozess-Optimierung	16
Abb.	18:	Ausschnitt aus der Dedicated Row für einen MR-Sensor. Links:	
		im Text näher beschriebene NiFe-Teststruktur	17
Abb.	19a:	Links: Rood Technologies Elektronenbild, W-geputtert	23
Abb.	19b:	Rechts: SEM-Bild imt Hannover.	23
Abb.	19c:	Links: SEM-Bild X-FAB.	23
Abb.	19d:	Rechts: Naomi Elektronenbild.	23
Abb.	19e:	Naomi Ionenbild – teilweise können die Membrandicken nur	
		geschätzt werden.	24
Abb.	20	Verschiedene Ansichten im SEM nach FIB.	25
Abb.	21	Messpunkte auf dem Wafer.	26
Abb.	22	Membrandickenbestimmung.	26
Abb.	23	Vergleich der verschiedenen Messmethoden.	27
Abb.	24	Membrandickenbestimmung mit unterschiedlichen Messmethoden	27
Abb.	25:	Wafer 18: Oxidabdeckung des FIB-Grabens	28
Abb.	26:	Wafer w22 cross section view nach Resistabdeckung.	28
Abb.	27:	Abgeformter Testchip für die Vermessung magnetischer	
		Strukturelemente.	33
Abb.	28:	Ermittelte Bandbreite der Laufzeit und der daraus ermittelten	
		Strömungsgeschwindigkeit der untersuchten Testchips	34

Abb. 29:	Galvanischer Formeinsatz mit erhabener 3D-Struktur für Testmessungen.	36
Abb. 30:	Galvanisierter Objektträger für die 2D-Testformeinsatzherstellung	37
Abb. 31:	Galvanisierter Objektträger nach der mechanischen Bearbeitung	37
Abb. 32:	Größen und Positionen der eingebrachten Fehlstellen wurden	
	vermessen und dokumentiert.	38
Abb. 33:	Galvanisch hergestellter Formeinsatz (3D-Struktur) mit gezielt	
	eingebrachten Fehlstellen	40
Abb. 34:	Dokumentation einer Ni-Mikrostruktur (Kanalbreite ca. 50 µm) mit	
	gezielt eingebrachten Fehlstellen.	41
Abb. 35:	Positionsbestimmung der einzelnen Fehlstellen, dokumentiert während	
	des Fertigungsprozesses	.41
Abb. 36:	Verbesserte Lager beim 2D-Tischsystem.	47
Abb. 37:	Steifigkeit mit den alten Lagern (blaue Linie), verbesserte Lager	
	(rote Linie)	47
Abb. 38:	Verhalten des Tisches bei 10nm Schrittweite	47
Abb. 39:	Realisierter Demonstrator	50
Abb. 40:	Hysterese-Messsensor in Messposition	.51
Abb. 41:	Prinzip der realisierten Steuerung	52
Abb. 42:	Messmethoden für magnetische Gleichfelder	55
Abb. 43:	links Ringkernsensor, rechts Mikrosensor (Größenvergleich links oben)	56
Abb. 44:	Sensorvariante Ringkern (links); Feldstärkeverteilung (Mitte); Flussdichte	
	(rechts) Ringkern in den Abmessungen Ø 3,95 × Ø 2,15 × 1,25 mm	57
Abb. 45:	Berechneter Fluss in Abhängigkeit der Durchflutung (links) und Rück	-
	rechnung der simulierten BH-Kennlinie im Vergleich zur angesetzten	
	Kennlinie am Ringkernsensor (rechts)	.58
Abb. 46:	Sensorvariante Mikrosensor, Feldstärkeverteilung (links); Flussdichte	
	(rechts)	.58
Abb. 47:	Rückrechnung aus statischer Simulation des Mikrosensors an 20 nm	
	Messschicht bei unterschiedlichen Luftspalten zwischen Sensor und	
	Probe	59
Abb. 48:	Rückrechnung aus statischer Simulation des Mikrosensors an 4,5 µm	
	Messschicht in Abhängigkeit der Messspaltbreite.	59
Abb. 49:	Transiente Simulation des Mikrosensors an einer 4,5 µm Schicht	60
Abb. 50:	Rückrechnung aus transienter Simulation an 4,5 µm Messschicht,	
	links Mikrosensor, rechts Ringkernsensor.	61
Abb. 51:	Simulierte B-H-Kennlinien bei zunehmenden Abständen mit einer	
	4ìm dicken Schicht am Ringkernsensor	62
	~	

Abb. 52:	Simulierter prozentualer Fehler bei der Messung einer 4 µm dicken	
	Schicht am Ringkernsensor.	62
Abb. 53:	Flussdichte B bei unterschiedlichen Probengrößen mit einer 4 µm	
	dicken Schicht am Ringkern 2.	63
Abb. 54:	Flussdichte B bei unterschiedlichen Probengrößen am Mikrosensor	63
Abb. 55:	Berechnete Resonanzfrequenzen am Mikrosensor bei kapazitivem	
	Eingang der Elektronik in Abhängigkeit der Windungszahl der	
	Sekundärspule.	64
Abb. 56:	Mittelung zur Verbesserung der Signalqualität [1].	65
Abb. 57:	Messungen mit Ringkernsensor über eine Winkeldrehung von 90° [1].	66
Abb. 58:	Messung mit Ringkernsensor an unstrukturierter 20 nm NiFe-	
	80/20 Probe [1]	66
Abb. 59:	Messung mit Ringkernsensor an unstrukturierter 2,5 µm NiFe-80/20	-
	Probe oder an unstrukturierten Proben [1]	66
Abb. 60:	Messung mit Ringkernsensor am Wafer mit 20nm NiFe	
	Teststrukturen [1]	67
Abb. 61:	Messung am Mikrosensor an unstrukturierter 20 nm NiFe-80/20-Probe	67
Abb. 62:	Messungen am Mikrosensor an strukturierter 390 µm × 390 µm × 20 ni	m
	NiFe-81/19-Probe, links 0°, rechts um 90° gedreht.	67
Abb. 63:	Stromdichte bei 100 kHz, links ohne Lunker, Mitte mit Lunker	
	60 x 80 μm in 12 μm Tiefe, rechts simulierter Signalverlauf	68
Abb. 64:	Querschnitt des Mikroaktors.	69
Abb. 65:	Kraft-Weg-Kennlinien für verschiedene Durchflutungen bei einem	
	sekundären Luftspalt von 10 μm	70
Abb. 66:	Magnetische Flussdichte im Magnetkreis (Stator und Anker) am Punkt	
	der Kraftkompensation [MAXWELL®]	71
Abb. 67:	Weg-Zeit und Kraft-Zeit Kennlinien (Durchflutung = 4 A,	
	Federvorspannung=100 μN).	71
Abb. 68:	Hub-Zeit und Geschwindigkeits-Zeit Kennlinien	72
Abb. 69:	Komponenten des Demonstrators.	75
Abb. 70:	Integrationsprinzip mit sinusförmigem Erregerstrom	76
Abb. 71:	Sensorkopf in Messposition.	77
Abb. 72:	Sensorkopfmechanik	78
Abb. 73:	Antastvorgang	78
Abb. 74:	Messelektronik-Struktur	79
Abb. 75:	Die Hysteresemessung aus Nutzersicht (Aktivitätendiagramm)	80
Abb. 76:	Kommunikationspfade	82

Abb. 77:	Messsystem Kommunikationsstruktur.	83
Abb. 78:	FIB-Präparationsanlage Micrion MicroMill 9500PV.	88
Abb. 79:	Schematische Darstellung des Drucksensors	89
Abb. 80:	Schnitt durch die Membran des Drucksensors	90
Abb. 81:	REM-Aufnahme unter 0° eines FIB-Schnittes, welcher unter 45° ange-	
	fertigt wurde, an einer Membran eines Drucksensors der Firma X-Fab.	91
Abb. 82:	Messreihe zum Vergleich von Soll- zu Istwert in der FIB.	92
Abb. 83:	Magnetfeldsensor der Firma Sensitec.	93
Abb. 84:	Erster Schnitt durch den Magnetfeldsensor.	93
Abb. 85:	REM-Aufnahme unter 40°	94
Abb. 86:	REM-Aufnahme eines Wirbelstromsensors.	95
Abb. 87:	REM-Aufnahme unter 30° eines FIB-Schnittes einer Teststruktur	95
Abb. 88:	Schematische Seitenansicht eines Mikro-Hysteresemesssensors mit	
	zu vermessender Probe.	98
Abb. 89:	FEM-Simulationsergebnis einer transienten Simulation	
	zur Berechnung der induzierten Spannung einer Messspule	98
Abb. 90:	FEM-Simulationsergebnis einer transienten Simulation	
	zur Berechnung des magnetischen Flusses	99
Abb. 91:	Schematische Seitenansicht des Mikro-Hysteresemesssensors	100
Abb. 92:	Schematische Darstellung des Mikro-Hysteresemesssensors mit	
	Vorderseitenkontaktpads	101
Abb. 93:	Schematische Darstellung des Mikro-Hysteresemesssensors mit	
	Durchkontaktierungen	101
Abb. 94:	Prozessfolge des Mikro-Hysteresemesssensors.	103
Abb. 95:	REM-Aufnahme der Messspule, der Kontaktpads, der zweiten	
	SU-8 TM -Einbettung und der Vias zur Erregerspule	103
Abb. 96:	REM-Aufnahme der Erregerspule, der Kontaktpads und der dritten	
	SU-8 TM -Einbettung	104
Abb. 97:	Lichtmikroskopische Aufnahme des gefertigten Mikrosensorchips	
	mit Vorderseitenkontaktpads	105
Abb. 98 :	Rückansicht des gefertigten Mikrosensorchips mit Durchkontak-	
	tierungen	106
Abb. 99:	Erregerstrom und induzierte Spannung als Differenz aus den	
	Messsignalen mit und ohne 20 nm dicke NiFe80/20-Probe	106
Abb. 100:	Hysteresekurve, verketteter Fluss für 20 Windungen der 20 nm dicken	
	NiFe80/20-Probe als Funktion des Erregerstroms.	107

Abb.	101:	Hysteresekurve gemessen an einer gesputterten NiFe-81/19-Struktur	
		(390 µm × 390 µm) bei 0°.	.108
Abb.	102:	Hysteresekurve gemessen an einer gesputterten NiFe81/19-Struktur	
		(390 μm × 390 μm) bei 90°.	.108
Abb.	103:	Sensorkopf für Mikrosensor mit Durchkontaktierungen.	.108
Abb.	104:	Schematische Darstellung des Gesamtsystems aus Sensorchip,	
		Federsystem und Mikroaktor	.110
Abb.	105:	Schematische Darstellung des Mikroaktors.	.110
Abb.	106:	Seitenansicht des Mikroaktors.	.111
Abb.	107:	Kraft-Auslenkung-Charakteristika der verschiedenen magnetomotori-	
		schen Kräfte (Luftspalt von 10 µm)	.113
Abb.	108:	a) Magnetische Flussdichte im magnetischen Kern (Stator und Läufer)	
		im Moment der Kompensation von den Kräften [Ansoft Maxwell®]	
		und b) 3D-Ansicht der magnetischen Flussdichte im magnetischen	
		Kern (Stator und Läufer) [Ansoft Maxwell®].	.114
Abb.	109:	Fertigungsablauf des Stators.	.115
Abb.	110:	Prozess der Strukturierung von SmCo [2].	.115
Abb.	111:	AZ-Mikrostruktur auf der oberen Cr-Schicht.	.115
Abb.	112:	Isotropes nasschemisches Ätzen von SmCo	.116
Abb.	113:	REM-Aufnahme der Hartmagnete aus SmCo.	.116
Abb.	114:	REM-Aufnahme des unteren Kerns und der Pole	.117
Abb.	115:	Strukturen des Pols in SU-8TM.	.117
Abb.	116:	REM-Aufnahme der ersten Spulenlage mit Via.	.118
Abb.	117:	Obere Spulenlage	.118
Abb.	118:	Angefertigter Stator.	.119
Abb.	119:	Versuchsvorrichtung.	.119
Abb.	120:	Prinzipieller Aufbau des Aktuators.	.123
Abb.	121:	ANSYS-Modell der Feder des ursprünglichen Entwurfs.	.124
Abb.	122:	Mittels FEM-Analysen optimiertes Federsystem-Design	.124
Abb.	123:	Design des Läufers mit Details des Federsystems.	.125
Abb.	124:	Verlauf der magnetische Feldstärke im 100 µm dicken Anker	
		(Permalloy-Folie) des Läufers.	.127
Abb.	125:	Skizze für die Berechnung der elektromagnetischen Kräfte und	
		Auslenkungen des Läufers bei einer fertigungsbedingten Streuung	
		des Luftspaltes zwischen Läuferanker und Spulenkern	.127

Abb.	126:	Elektromagentische und Federkräfte bei einem Spulenstrom von
		420 mA für Abstände zwischen Läuferanker und Spulenkern von
		10 μm, 5 μm bis zu 1 μm128
Abb.	127:	Layout der Leiterbahnen für die Kontaktierung, Versorgung und
		Auslese des Sensors auf der Läufer-Plattform128
Abb.	128:	Schematischer Querschnitt der Leiterbahnen auf den Federstrukturen
		des Läufers für die drei verschiedenen Designvarianten129
Abb.	129:	Wichtigste Prozessschritte zur Herstellung des Läufers130
Abb.	130:	Galvanisch abgeschiedene Au-Leiterbahnen mit einer Höhe von
		10,4 μm und einem Abstand von 1,8 $\mu m.$
Abb.	131:	Rückseite des entwickelten Läufers mit integriertem Permalloyanker
		(Abb. 131a) und Vorderseite mit Au-Metallisierung für die
		Kontaktierung, Versorgung und Auslese des Sensors (Abb. 131b)131
Abb.	132:	Komponenten des Aktuators, die beim Assembling zueinander
		justiert und miteinander verbunden werden müssen132
Abb.	133:	a) Schematischer Querschnitt des Aktuators und
		b) Detail der Verbindung von Läufer und Stator132
Abb.	134:	Entfernung der Si-Stege mittels Laser Cutting nach dem Assembling
		von Stator, Läufer und Sensorr (Schema)133
Abb.	135:	Aktuator mit Sensor auf einer PCB nach dem Kontaktieren mittels
		Drahtbonden
Abb.	136:	Maximale Auslenkung des Läufers bei einem Strom von 420 mA134

Tabellenverzeichnis

1 Sensitec GmbH

1.1 Wissenschaftlich-technische Zielsetzung

1.1.1 Wissenschaftlich-technische Zielsetzung AP1

Zielsetzung bei der Sensitec GmbH im Rahmen von AP1 war es, durch die Einbindung eines bestehenden Dual-Beam-FIB Systems in eine Waferfertigung für magnetische Sensoren die Inline-Analytik bzgl. Dimensionsmessung und stöchiometrische Zusammensetzung wesentlich zu verbessern.

Dies sollte mit folgenden Maßnahmen erreicht werden:

- Beschaffung eines EDX-Detektors und Integration in das FIB-System.
- Datentechnische Anbindung des FIB-Systems an die Prozessdatenbank der Sensitec-Waferfertigung.
- Entwicklung und Fertigung eines Stromsensors als Testobjekt für 3D-Metrologie.
- Methodenentwicklung auf dem Gebiet der dimensionalen und stöchiometrischen Analytik anhand von Anwendungsbeispielen aus der Sensitec Waferfertigung und der CHARMA Projektpartner.

1.1.2 Wissenschaftlich-technische Zielsetzung AP2 / 3

Für AP2 – Entwicklung eines Mikrosensors für magnetische Hysteremessungen – und AP3 – Entwicklung eines 3D-Messsystems – sollte Sensitec als Industriepartner an der Erarbeitung der jeweiligen Anforderungsdefinition (Lastenheft) mitwirken. Darüber hinaus war es Aufgabe der Sensitec GmbH, im Rahmen von AP3 geeignete magnetische 3D-Strukturen für Testmessungen an dem von LPKF/innomas/Steinbeis-Transferzentrum (STZ) Mechatronik entwickelten 3D-Messsystem zur Verfügung zu stellen.

1.2 Wissenschaftlich-technische Ergebnisse

1.2.1 Inbetriebnahme der quantitativen EDX-Analyse

2005 wurde der SEM-Teil des Dual Beam FIB von Sensitec (Typ: FEI Altura 875) um ein Inca Drycool EDX System der Firma Oxford Instruments erweitert. Es besteht aus einem Si(Li)-Halbleiterdetektor mit einer Energieauflösung von 100eV und einer patentierten stickstofffreien Kühleinheit. Damit ist die Aufnahme und standardlose quantitative Auswertung von durch die SEM-Elektronen angeregten Röntgenspektren in rechteckigen Bildausschnitten möglich. Darüber hinaus erlaubt die INCA EDX Software die Erfassung von Elementintensitäten entlang von Linienprofilen (sog. Line Scans) und in 2-dimensionalen Element-Verteilungsbildern (Element Maps).