International Light Simulation Symposium 2012

ILISIS 2012

 $7^{th}/8^{th}$ of March 2012; Nuremberg, Germany

Proceedings

International Light Simulation Symposium 2012

ILISIS 2012

7th/8th of March 2012; Nuremberg, Germany

Proceedings

Steinbeis Transfer Center Applied Lighting Technology

Imprint

© 2012 Steinbeis-Edition

All rights reserved. No part of this book may be reprinted, reproduced, or utilised in any form by any electronic, mechanical, or other means now known or hereafter invented, including photocopying, microfilming, and recording or in any information storage or retrieval system without written permission from the publisher.

Steinbeis Transfer Center Applied Lighting Technology (Editor)

International Light Simulation Symposium 2012 ILISIS 2012 7th/8th of March 2012; Nuremberg, Germany Proceedings

1st edition 2012 | Steinbeis-Edition, Stuttgart

Layout: Steinbeis-Edition Production: Frick Kreativbüro & Onlinedruckerei e.K., Krumbach

Steinbeis is an international service provider in knowledge and technology transfer. The Steinbeis Transfer Network is made up of about 800 Steinbeis Enterprises and project partners in 50 countries. Specialized in chosen areas, Steinbeis Enterprises' portfolio of services covers consulting; research and development; training and employee development as well as evaluation and expert reports for every sector of technology and management. Steinbeis Enterprises are frequently attached to research establishments, universities, universities of applied sciences and universities of cooperative education.

Founded in 1971, the Steinbeis-Stiftung is the umbrella organization of the Steinbeis Transfer Network. It is headquartered in Stuttgart, Germany. Steinbeis-Edition publishes selected works mirroring the scope of the Steinbeis Network expertise.

Table of Content

Speakers' Contributions

Rayfiles for non-sequential raytracing11
Advanced light source with rays for rendering engines25
Colour Converters: optical elements in Solid State Lighting
Thermo optical simulations of white LEDs
Realistic Ray-Tracing of Surface and Volume Diffusers
Simulation of Phosphor Converted LED Packaging with Considerations on Phosphor Settling71
Differential optics for illumination design in the presence of caustics
Tolerancing Free Form Optics for Illumination103
Freeform Surface Calculation for Artificial Lighting and Daylighting117
Concepts for Shaping Light
Modeling of refractive freeform surfaces by a nonlinear PDE for the generation of a given target light distribution143
Light-matter interaction at different length scales: An all-embracing simulation procedure157
End-to-end Simulation of an LED-edge-lit Liquid Crystal Display

Systems Modeling of Vehicular Cameras179
Stray Light Analysis of Multi-Spectral Optical Filters199
Specular BSDF Approximation for Efficient Specular Scene Rendering217
Interior Illumination Simulation in Aircraft Industry233
Signal Lamp Luminance Distribution Simulation and Assessment Using the "Volkswagen Benchmark System"
LED Headlamp Distribution Optimization using a Multiple-IES-File-Source Approach261
Optical Design process at Valeo Lighting
Using a night time driving simulation for the development of camera controlled light algorithms287
GPU accelerated lighting simulation with LucidShape299
Forward Reflection of Road Surfaces for Vehicle Lighting

Poster Contributions

Advanced Modeling for Light Simulation
Modellierung von Spektren weißer Leuchtdioden339
Simulation of tightly focused ultrashort optical pulses taking into account polarization
Thermal Simulation of Lighting Systems with Open Source Software
Theory and practice in plastic optics
Principles of Daylight Guiding Design
Numerically-based development and construction of a panel light405
Phase space concepts for illumination systems in optical lithography421
Signal lamps with diffusive optical parts429
Development of an optimized LED-CHMSL439
From Development to Start of Production447
Virtual development of intelligent headlight systems463
Processing of Thermoplastic Optics by Compression Induced Solidification483

Speakers' Contributions

Rayfiles for non-sequential raytracing

Regina Dürr, OSRAM Opto Semiconductors GmbH, Regensburg Dr. Ulrich Streppel, OSRAM Opto Semiconductors GmbH, Regensburg

Abstract

Rayfiles are a common option to model the nearfield and farfield properties of light sources in optical design software. Especially for the design of secondary optics for LEDs, rayfiles are a useful tool to describe the emission characteristics without modelling the inner details of the light source. Most non-sequential raytracing programs offer an interface for rayfiles. Unfortunately there is no standardized rayfile format today, but a huge variety of incompatible formats encoding almost the same information. In this paper we discuss and compare different rayfile formats. We suggest a new generalized rayfile format which allows flexible and unambiguous storage of ray data. The new format has the capability to serve as a new standard ray data format.

1 What are rayfiles and which information do they contain?

In most optical designs the exact representation of light sources plays an important role. For the design of optical elements close to the light source, optical designers need detailed information about the near field emission characteristics. In such cases, farfield emission data only is not sufficient.

One possibility for light source modelling, and LED modelling in particular, are so-called rayfiles. Rayfiles represent the emission of the light source, e.g. an LED, by a number of rays. Shown in the rayfile are a few thousand up to several million rays exiting the light source. Each ray is described at least by three coordinates defining its start point, three coordinates specifying the propagation direction and the ray power: (x, y, z, l, m, n, ϕ). Rayfiles offer a possibility to describe the near-field and