

Institut für Mikroproduktionstechnik der Gottfried Wilhelm Leibniz Universität Hannover (Hrsg.)

UltraMag

Integration ultradünner Magnetfeldsensoren in intelligenten Automatisierungskomponenten

Institut für Mikroproduktionstechnik der Gottfried Wilhelm Leibniz Universität Hannover (Hrsg.) UltraMag

Autoren

Dr.-Ing. Hans-Jürgen Remus

Dr.-Ing. Ralf Janke

Dr.-Ing. Marc Christopher Wurz

Dipl.-Ing. Karl-Heinz Suphan

M. Sc. Stefan Apel

Dipl.-Ing. Bernd Malsch

Dipl.-Ing. Rahel Kruppe

Dipl.-Ing. Matthias Gebhardt

Dipl.-Ing. Meike Wehner

Herausgeber

Prof. Dr.-Ing. Lutz Rissing

Institut für Mikroproduktionstechnik der Gottfried Wilhelm Leibniz Universität Hannover (Hrsg.)

UltraMag

Integration ultradünner Magnetfeldsensoren in intelligenten Automatisierungskomponenten

Impressum

© 2016 Steinbeis-Edition

Alle Rechte der Verbreitung, auch durch Film, Funk und Fernsehen, fotomechanische Wiedergabe, Tonträger jeder Art, auszugsweisen Nachdruck oder Einspeicherung und Rückgewinnung in Datenverarbeitungsanlagen aller Art, sind vorbehalten.

Institut für Mikroproduktionstechnik der Gottfried Wilhelm Leibniz Universität Hannover (Hrsg.)

UltraMag -

Integration ultradünner Magnetfeldsensoren in intelligenten Automatisierungskomponenten

1. Auflage, 2016 | Steinbeis-Edition, Stuttgart ISBN 978-3-95663-049-1

Satz: Steinbeis-Edition Titelbild: STZ Mechatronik

Druck: WIRmachenDRUCK GmbH, Backnang

Steinbeis ist weltweit im unternehmerischen Wissens- und Technologietransfer aktiv. Zum Steinbeis-Verbund gehören derzeit rund 1.000 Unternehmen. Das Dienstleistungsportfolio der fachlich spezialisierten Steinbeis-Unternehmen im Verbund umfasst Forschung und Entwicklung, Beratung und Expertisen sowie Aus- und Weiterbildung für alle Technologie- und Managementfelder. Ihren Sitz haben die Steinbeis-Unternehmen überwiegend an Forschungseinrichtungen, insbesondere Hochschulen, die originäre Wissensquellen für Steinbeis darstellen. Rund 6.000 Experten tragen zum praxisnahen Transfer zwischen Wissenschaft und Wirtschaft bei. Dach des Steinbeis-Verbundes ist die 1971 ins Leben gerufene Steinbeis-Stiftung, die ihren Sitz in Stuttgart hat. Die Steinbeis-Edition verlegt ausgewählte Themen aus dem Steinbeis-Verbund.

176447-2016-01 | www.steinbeis-edition.de

Vorwort

Der vorliegende Bericht entstand während der Laufzeit des durch das BMBF geförderten Verbundprojekts "Integration ultradünner Magnetfeldsensoren in intelligente Automatisierungskomponenten (UltraMag)". Die Arbeiten wurden im Zeitraum vom 1. Februar 2010 bis zum 31. Dezember 2013 durchgeführt.

Ziel des Verbundprojekts war die Leistungsverbesserung elektromagnetischer Antriebs-, Steuerungs- und Messsysteme durch Implementierung ultradünner Magnetfeldsensoren, die auf Grund der geringen Bauhöhe die Magnetfeldmessung an bisher nicht zugänglichen Stellen ermöglichen sollte. Die so gewonnenen Messdaten sollten die Kenntnis des Systemzustandes erweitern und den Betrieb durch verfeinerte Steuer- und Regelalgorithmen optimieren.

Um die Integration magnetoelektronischer Bauelemente und Schaltungen in intelligenten Automatisierungskomponenten zu ermöglichen, wurden Magnetfeldsensoren auf der Basis des Hall-Effekts sowie des GMR-Effekts und weichmagnetische Mikrostrukturen zur Feldführung und -umleitung mit angepasster Auswerteelektronik kombiniert. Eine weitere Voraussetzung für die räumliche und funktionelle Implementierung der magnetischen Mikrosensoren wurde durch die Entwicklung einer an die Anforderungen einer ultradünnen Bauweise angepassten Aufbau- und Verbindungstechnik geschaffen, wozu auch die Entwicklung einer entsprechenden Signalverarbeitungs- und Kompensationselektronik gehört. Das Gesamtsystem wird durch die Entwicklung und den Aufbau eines angepassten Steuerungssystems vervollständigt, das eine aktive Zustandsüberwachung im Luftspalt ermöglicht und so eine Verbesserung der antriebs- oder messtechnischen Regelung zulässt.

Die von den sechs Konsortiumspartnern ausgeführten Entwicklungsarbeiten umfassten die simulationsgestützte Auslegung des Einsatzprototypen in Form eines elektrischen Synchronmotors sowie dessen Aufbau und Charakterisierung, die simulationsgestützte Auslegung, Fertigung und Auswertung von Magnetfeldsensoren auf sehr dünnen Substraten, die Entwicklung und Fertigung eines ultradünnen Sensor-Package sowie die Entwicklung, die Auslegung und den Aufbau eines integrierten Steuerungssystems mit den dazugehörigen Steuer- und Regel-

algorithmen. Ein weiterer Einsatzprototyp für die entwickelten Sensoren stellte ein Hysteresemessadapter für die magnetische Charakterisierung von Blechen und Halbzeugen dar.

Im Namen aller Beteiligten möchten wir dem BMBF, das die Durchführung dieses Projekts ermöglichte, und der VDI/VDE-Innovation + Technik GmbH für die Betreuung während der Projektdurchführung unseren Dank aussprechen. Des Weiteren bedanken wir uns bei allen Projektpartnern für die sehr gute, produktive Zusammenarbeit.

Garbsen im Juni 2015 Prof. Dr.-Ing. L. Rissing

Inhaltsverzeichnis

Vo	VorwortV			
1	Appl	ikation	der entwickelten Sensoren in elektrischen	
			emen	3
	1.1	-	schaftlich-technische Zielsetzung	
	1.2	Wissen	schaftlich-technische Herausforderungen	6
	1.3	Wissen	schaftlich-technische Ergebnisse	7
	1.4		ätzung des Projekterfolges	
	1.5		nreibung des Verwertungsplans	
	1.6	Schutz	rechtsanmeldungen	19
	1.7		entlichungen	
2			und Grundsatzuntersuchungen zu ultradünnen	21
	2.1		ensorenschaftlich-technische Zielsetzung	
	2.2	2.2.1	schaftlich-technische Ergebnisse Sensorstrukturen mit einfachförmigen	∠1
		2.2.1	Flusskonzentratoren	21
		2.2.2		
		2.2.2	Flussdichtekompensation im Sensor	
	2.3		rmung des äußeren Feldes	
	2.3	2.3.1	5	
			Prinzipielle Abschirmungsstrukturen	
		2.3.2	Untersuchung runder Abschirmungsprofile	
		2.3.3	Untersuchung dreidimensionaler Flussumleitungen	3/
		2.3.4	Untersuchung weiterer Prinzipien zur Abschirmung des äußeren Feldes	39
		2.3.5	Ringstruktur in 3D mit Sensorelementen	
		2.3.6	Variation der geometrischen Anordnung	
		2.3.7	T-Streifenstruktur in 3D mit äußerem Feld	
			in Z-Richtung	43
		2.3.8	Variation der Stegbreite und Einfügen eines	10
			Mittelsteges	45

		2.3.9	langentialdesign XY-Sensormodell	46
		2.3.10	Veränderung der Geometrie Tangentialdesign XY-Sensor	48
		2.3.11	Verkürzung der Streifenstruktur:	49
		2.3.12	Materialänderung auf CoFe	52
		2.3.13	Festlegung des Einbauortes	52
		2.3.14	Nachrechnung der Z-Struktur mit CoFe	53
		2.3.15	Nachrechnung der Ringstruktur	55
		2.3.16	Simulation Gesamtaufbau	56
		2.3.17	Optimierung des XY-Designs	59
		2.3.18	Design III C – Geometrie und Parameter	60
		2.3.19	Design III C – Simulation	61
		2.3.20	Bewertung Design III C	62
		2.3.21	Redesign I – Geometrie und Parameter	63
		2.3.22	Redesign I – Simulation	64
		2.3.23	Auswertung Redesign I	65
		2.3.24	Redesign II – Geometrie und Parameter	
		2.3.25	Redesign II – Simulation	66
		2.3.26	Auswertung Redesign II	67
		2.3.27	Redesign II – Geometrie und Parameter	
		2.3.28	Redesign II B1 – Simulation	68
		2.3.29	Redesign II B2 – Simulation	70
		2.3.30	Auswertung Redesign B1 und B2	71
		2.3.31	Redesign II C – Geometrie und Parameter	72
		2.3.32	Simulation Redesign II C	73
		2.3.33	Auswertung Redesign II C	76
		2.3.34	Auswertung der Optimierungsrechnungen	77
	2.4	Einschä	itzung des Projekterfolges	78
	2.5		reibung des Verwertungsplans	
	2.6		echtsanmeldungen	
	2.7	Veröffei	ntlichungen	79
3		·	einer dickenreduzierten Aufbau- und	
	Verb	_	technologie für sensorische Anwendungen	
	3.1		schaftlich-technische Zielsetzung	
	3.2	Ausgan	gssituation	82

	3.3	Wissen	schaftlich-technische Ergebnisse	83
		3.3.1	Bewertung möglicher Integrationskonzepte unter	
			dem Aspekt der resultierend erforderlichen Aufbau- u	nd
			Verbindungstechnik	84
		3.3.2	Substrattechnologie	85
		3.3.3	Integration Sensorchip	86
		3.3.4	Auswertung Prototypenfertigung	88
	3.4	Einsch	ätzung des Projekterfolges	
	3.5		reibung des Verwertungsplans	
	3.6		rechtsanmeldungen	
	3.7		ntlichungen	
4	Entv	vicklung	ultradünner Sensor-Chips in CMOS-Technologie	93
	4.1	Wissen	schaftlich-technische Zielsetzung	93
	4.2	Arbeite	en der Micronas im Projekt UltraMag	93
		4.2.1	Micronas Hall-IC	
		4.2.2	Ablauf der Fertigungsschritte	96
		4.2.3	Waferdünnen	
		4.2.4	Montage auf Anschlussplatine	
	4.3	Wissen	schaftlich-technische Ergebnisse	
	4.4		ätzung des Projekterfolges	
	4.5		reibung des Verwertungsplans	
	4.6		rechtsanmeldungen	
	4.7		ntlichungen	
5	Mess	s-, Steue	r- und Regelelektroniken für magnetische Aktoren u	nd
	Mess	systeme	mit ultradünnen Magnetfeldsensoren	103
	5.1	Vorhab	ensvoraussetzungen	104
	5.2		g und Ablauf des Vorhabens	
	5.3	Stand o	der Wissenschaft und Technik zu Projektbeginn	107
	5.4		rechte, bekannte Verfahren und	
			uktionen, die für die Durchführung des Vorhabens	
			t wurden	112
	5.5		e verwendeter Fachliteratur, Informations- und	
	-	U	pentationsdienste	112

	5.6		menarbeit mit anderen Stellen	
	5.7		Ergebnisse	14
		5.7.1	Definition des Anforderungsprofils ultradünner	
			Magnetfeldsensoren1	15
		5.7.2	Konzeption, Dimensionierung, Aufbau und	
			Inbetriebnahme eines Prüfstands zur Charakterisierung	
			ultradünner Magnetfeldsensoren1	
		5.7.3	Integration ultradünner Magnetfeldsensoren in das rotierend	le
			Luftspaltfeld elektronisch kommutierter	
			Kleinmaschinen1	23
		5.7.4	Konzeption, Dimensionierung, Aufbau und	
			Inbetriebnahme eines Messsystems zur Ermittlung	
			magnetischer Eigenschaften unter Verwendung	
			ultradünner Magnetfeldsensoren1	35
	5.8	Voraus	sichtlicher Nutzen, Ergebnisverwertung, gesammelte	
		Erfahru	ıngen1	48
	5.9	Währe	nd Vorhabensdurchführung bekannt	
		geword	lene Fortschritte bei anderen Stellen1	49
	5.10		e und geplante Veröffentlichungen1	
			schaftlich-technische Ergebnisse	
		des Voi	rhabens1	50
	5.12	Fortsch	reibung des Verwertungsplans1	50
6	Analy	zee Sim	ulation und Messung integrierter ultradünner	
U			ensoren in intelligenten Antriebssystemen1	55
	6.1		schaftlich-technische Zielsetzung	
	6.2		tion der Antriebssysteme	
	0.2	6.2.1	FEM-Analyse des Standardmotors ECM63x60/11	
		6.2.2	Messtechnische Analyse des Einflusses des	.)0
		0.2.2	Statorblechschnitts und des Blechmaterials	150
		6.2.3	FEM-Simulation des ECMa48x60	
	(2			
	6.3		tung des Anforderungsprofils	
		6.3.1	Simulation der Einbausituation	
		6.3.2	Anforderungsprofil	./9

	6.3.3	Simulation der Induktionen unter Berücksichtigun	g
		der Sensornut	181
	6.3.4	Erprobung der Sensoren	182
6.	4 Einsch	ätzung des Projekterfolgs	183
6.	5 Fortscl	hreibung des Verwertungsplans	183
7 Er	ntwicklung	g ultradünner, dreidimensional messender	
M	agnetfelds	ensoren	185
7.	1 Wisser	nschaftlich-technische Zielsetzung	185
7.	2 Wisser	nschaftlich-technische Frage-/Aufgabenstellungen	187
7.	3 Konzej	ptbildung und Design	189
7.	4 Wisser	nschaftlich-technische Ergebnisse	211
7.	5 Einsch	ätzung des Projekterfolges	241
7.	6 Fortsch	hreibung des Verwertungsplans	241
7.	7 Schutz	rechtsanmeldungen	241
7.	8 Veröffe	entlichungen	241
Litera	ıturverzeic	hnis	243

Abbildungsverzeichnis

Abb. 1:	Einordnung des Teilprojekts I in das Gesamtvorhaben	4
Abb. 2:	ECM42x45_SiFe	
Abb. 3:	Leistungsdaten ECM42x45_SiFeKAG	6
Abb. 4:	Geometrie der Blechschnitte für die konventionelle Innenbewick	
	lung (links) und die neu entwickelte Außenbewicklung (rechts)	7
Abb. 5:	Prozessentwicklung der KAG-Technologie zur Außenbewicklung	8
Abb. 6:	ECMa63x60_CoFe (I), Polradspannung	8
Abb. 7:	ECMa63x60_CoFe (II), Polradspannung	9
Abb. 8:	ECMa42x45_CoFe(I), Polradspannung1	0
Abb. 9:	Ansteuerelektronik der STZ für KAG-Demonstrator1	1
Abb. 10:	Leistungsdaten ECMa42x45_CoFe (I)1	2
Abb. 11:	Aufbau des Maschinenprüfstands und Messergebnisse des	
	Wirkungsgrads ECMa63x60_CoFe (II)1	3
Abb. 12:	Topfmagnet zur Überprüfung der magnetischen Simulation1	4
Abb. 13:	Simulationsergebnisse für Feldverteilung im Topfmagneten	5
Abb. 14:	Verlauf der magnetischen Kraft F im Luftspalt des Topfmagneten	
	in Abhängigkeit der Luftspalthöhe δ (bis δ = 1 mm)	5
Abb. 15:	Vergleich kommerzieller Hall-Sensor-Packages mit	
	UltraMag-Package1	6
Abb. 16:	Verlauf der magnetischen Kraft F im Luftspalt des Topfmagneten	
	in Abhängigkeit der Luftspalthöhe δ (bis δ = 250 μ m)	7
Abb. 17:	Flusskonzentratoren im homogenen Feld einer Helmholtz-Spule,	
	(rechts mit Z-Konzentrator und gedrehter Helmholtz-Spule)2	2
Abb. 18:	Anteile der Flussdichte (links B_y , Mitte B_x , rechts B_x	
	sensitive Struktur gezoomt)2	2
Abb. 19:	Feldverstärkung und Abschwächung	
	Sensordesign Halbkreis (IMPT)	3
Abb. 20:	Feldverstärkung und Abschwächung Sensordesign Winkel2	4
Abb. 21:	Feldverstärkung und Abschwächung Sensordesign Doppel-T2	5
Abb. 22:	Feldverstärkung und Abschwächung Sensordesign Doppel-T22	6
Abb. 23:	Feldverstärkung und Abschwächung Sensordesign Doppel-T52	7
Abb. 24:	Feldverstärkung und Abschwächung Sensordesign Doppel-T62	7

Abb. 25:	Einheitskreis der Sensitivität mit Flusskonzentrator	
	bei Felddrehung	.28
Abb. 26:	Flusskonzentrator in Z-Richtung (mittig)	.29
Abb. 27:	Z-Sensor, Y-Komponente, Feldvektor in Z-Richtung (links),	
	Feldvektor in X-Richtung (rechts)	.30
Abb. 28:	Feldvektor in Y-Richtung, Z-Sensor (links), X-Sensor (Mitte),	
	Y-Sensor (rechts)	.30
Abb. 29:	Kompensationsanordnung	.31
Abb. 30:	Abschwächung des Sensorfeldes durch einen Kompensationsstrom.	
	Variation des Leiterabstandes	.32
Abb. 31:	Modell eines möglichen Z-Sensors mit Kompensation	.33
Abb. 32:	Flussdichtekompensation in diesem Modell	
	erst bei 13,4 A möglich	.34
Abb. 33:	Untersuchung von Abschirmungsvarianten	.35
Abb. 34:	runde Abschirmung, Vorschlag IMPT	.36
Abb. 35:	Winkelabhängigkeit runde Abschirmung	.37
Abb. 36:	3D Flussumleitung, Beispielvariante 3	.38
Abb. 37:	gerechnete Varianten, Modelle der Varianten 1 und 5	.38
Abb. 38:	Winkelabhängigkeit Struktur 1-5	
Abb. 39:	Ringstruktur Draufsicht	.40
Abb. 40:	Ringstruktur 3D-Modell mit Sensoren	.40
Abb. 41:	Auswertung der Flussdichte B _x in den Sensoren	.41
Abb. 42:	Variation der Strukturbreite und Sensoranordnung (I)	.42
Abb. 43:	Variation der Strukturbreite und Sensoranordnung (II)	.42
Abb. 44:	Auswertung der Simulationsergebnisse	.43
Abb. 45:	T-Streifenstruktur zur Konzentration des äußeren Feldes	.44
Abb. 46:	Auswertung der Simulationsergebnisse	.44
Abb. 47:	Einfügen eines Mittelsteges	.45
Abb. 48:	Variation der Breite des Mittelsteges zur Einstellung	
	der Feldabschwächung	.45
Abb. 49:	Tangentialdesign als XY-Sensorabschirmung	.46
Abb. 50:	Theoretischer Ansatz	.46
Abb. 51:	Auswertung der Simulationsergebnisse des Feldes in X-Richtung	.47
Abb. 52:	Bereiche der Feldabschwächung	.48
Abb. 53:	Verkürzung der Streifenstruktur	.49

Abb. 54:	Variation der Strukturdicke zur Flussführung	50
Abb. 55:	Variation der Länge des Metallstreifens	51
Abb. 56:	Vergleich BH-Kurven von NiFe und CoFe	52
Abb. 57:	Einbauort "Zahn"	53
Abb. 58:	Z-Sensorstrukturen, ohne und mit Mittelsteg	53
Abb. 59:	Flussdichte B _x im Sensorbereich in Abhängigkeit vom äußeren	
	Bz-Feld. links: ohne Mittelsteg mit Variation Sensorabstand	54
Abb. 60:	Endabmessungen des Z-Sensors	54
Abb. 61:	Ringstruktur mit Deckschicht und Sensorplatzierung	55
Abb. 62:	Untersuchung Ringstruktur mit CoFe und Deckschicht	56
Abb. 63:	Modell des Gesamtaufbaus. Abstandsparameter y und z	57
Abb. 64:	Feldbild Gesamtaufbau mit B-Feld aus X-Richtung.	
	Abstandsparameter z = y = 100 μm. Beeinflussung sehr klein	58
Abb. 65:	Mindestabstand in Y-Richtung, umgesetztes Chipdesign (IMPT).	59
Abb. 66:	Übersicht Optimierungsvarianten	60
Abb. 67:	Design III C – Simulationsparameter und Modell	60
Abb. 68:	Diagramme Design III C (1)	61
Abb. 69:	Diagramme Design III C (2)	62
Abb. 70:	Redesign I – Simulationsparameter und Modell,	
	Schnittdarstellung	63
Abb. 71:	Diagramme Redesign I (1)	64
Abb. 72:	Diagramme Redesign I (2)	64
Abb. 73:	Redesign II – Simulationsparameter und Modellgeometrie	
	(teilweise Schnittdarstellg.)	65
Abb. 74:	Diagramm Redesign II (1)	66
Abb. 75:	Diagramm Redesign II (2)	66
Abb. 76:	Vergleich Redesign I und Redesign II	67
Abb. 77:	Redesign II parametrisierte Ringstruktur	68
Abb. 78:	Diagramme Redesign II B1 (1)	68
Abb. 79:	Diagramme Redesign II B1 (2)	69
Abb. 80:	Diagramme Redesign II B12	70
Abb. 81:	Simulationsparameter und Modell	72
Abb. 82:	Diagramme Redesign C 1	73
Abb. 83:	Diagramme Design C 2	74
Abb. 84:	Diagramme Redesign II C 3	75

Abb. 85:	LTCC-Substrat	86
Abb. 86:	Vergleich unterschiedlicher Chipdicken (Standard, abgedünnt)	87
Abb. 87:	Vergleich Prototyp mit Bauelementen in Standardbauformen	89
Abb. 88:	Geometrie des UltraMag-ICs	94
Abb. 89:	Ablauf der Fertigungsschritte	96
Abb. 90:	Dicken der Prototypen-ICs	97
Abb. 91:	Anschlussplatine (,Sensorfinger') für Prototypen	98
Abb. 92:	Bondschema des Sensorfingers	98
Abb. 93:	Foto eines Sensorfingers	99
Abb. 94:	Grundstruktur eines mechatronischen Systems [VDI2206]	117
Abb. 95:	Erzeugung homogener Gleich- und Wechselfelder	118
Abb. 96:	Variantenmatrix Prüfplatz für Sensoren	119
Abb. 97:	Sensor-Prüfstand: Drauf- und Seitenansicht	120
Abb. 98:	Sensor-Prüfstand: Seitenansicht	120
Abb. 99:	Sensor-Prüfstand: Schnittansicht	121
Abb. 100:	Sensor-Prüfstand: Draufsicht	122
Abb. 101:	Welle mit montierten Magnetringen	122
Abb. 102:	Flussdichte bei 800 U/min	123
Abb. 103:	Flussdichte bei 1000U/min	123
Abb. 104:	STZ Motorprüfstand	124
Abb. 105:	Messung der Polradspannung	126
Abb. 106:	Funktionsanpassung (Fit) der Polradspannung	126
Abb. 107:	Ermittlung von L(i), Kennlinienfeld L(i, θ)	127
Abb. 108:	Elektromechanisches Modell	127
Abb. 109:	Interne Struktur des Stromreglers	128
Abb. 110:	Überblick Ansteuerelektronik (Bauteilseite)	129
Abb. 111:	Überblick Ansteuerelektronik (Lötseite)	130
Abb. 112:	Brückenzweig mit Ansteuerung	131
Abb. 113:	Lagerschildplatine zur Sensorintegration	133
Abb. 114:	Digitale Filterung des Sensorsignals	134
Abb. 115:	Sensorsignale im Motorluftspalt	134
Abb. 116:	Steingroeversonde	135
Abb. 117:	Steingroeversonde	136
Abb. 118:	Grundkonzept Messsonde	137

Abb. 119:	Voruntersuchung dreidimensional	138
Abb. 120:	Flussdichteverlauf im Blech unter dem mittleren Kern	139
Abb. 121:	Blockschaltbild Blechmessadapter	140
Abb. 122:	Geometrieparameter	141
Abb. 123:	Ergebnisse der Simulation Variation der Geometrieparameter,	
	unterschiedliche Durchflutungen und Blechdicken	
	(Breite = Dicke)	142
Abb. 124:	Variation von Schenkelabstand und Höhe (Blechdicke 0,1 mm)	143
Abb. 125:	Feldstärkeverlauf auf der Blechoberfläche	144
Abb. 126:	Spezifikation der Sondenkerne	145
Abb. 127:	Schaltungssimulation der Gegentaktendstufe (ein Kanal)	146
Abb. 128:	Blockschaltbild (Simulink)	147
Abb. 129:	Ermittlung der magnetischen Eigenschaften einer Blechprobe	148
Abb. 130:	Standard EC-Motor ECM63x60/1	157
Abb. 131:	FEM-Simulationsmodell ECM63x60/1	158
Abb. 132:	Ergebnisse der Kennfeldberechnung (1)	158
Abb. 133:	Ergebnisse der Kennfeldberechnung (2)	159
Abb. 134:	Messung des Wirkungsgrads bei unterschiedlichen Drehzahlen	161
Abb. 135:	Messung des Wirkungsgrads bei unterschiedlichen	
	Strangströmen	162
Abb. 136:	Messung des Drehmoments bei unterschiedlichen	
	Strangströmen	163
Abb. 137:	Messung der Rastmomente am ECM63x60	165
Abb. 138:	Messung der Rastmomente am ECMa63x60 Si	166
Abb. 139:	Messung der Rastmomente am ECMa63x60 Co	167
Abb. 140:	Demonstrator ECMa48x60	168
Abb. 141:	FEMAG-DC Simulationsmodell des ECMa48x60	169
Abb. 142:	Ergebnisse der Kennfeldberechnung für den ECMa48x60 (1)	169
Abb. 143:	Ergebnisse der Kennfeldberechnung für den ECMa48x60 (2)	170
Abb. 144:	Radiale und tangentiale Feldrichtung	171
Abb. 145:	Radiale und tangentiale Feldrichtung	172
Abb. 146:	Feldauswertung in Luftspaltmitte und am Luftspalt in	
	direkter Statornähe	174
Abb. 147:	Verlauf der magnetischen Flussdichte unterhalb der Statornut	
	(Position 1)	176

Abb. 148:	Verlauf der magnetischen Flussdichte unterhalb des Statorzahns
	(Position 2)
Abb. 149:	Verlauf der magnetischen Flussdichte am Nutgrund (Position 3)178
Abb. 150:	Verlauf der magnetischen Luftspaltinduktion in Luftspaltmitte
	unterhalb des Statorzahns
Abb. 151:	Technische Zeichung der Sensornut im Statorzahn
Abb. 152:	Simulationsmodell mit Sensornut
Abb. 153:	Verlauf der magnetischen Flussdichte in Luftspaltmitte
	unterhalb des Statorzahns unter Berücksichtigung des Einflusses
	der Sensornut
Abb. 154:	Demonstrator mit Sensoren
Abb. 155:	Einordnung des Teilprojekts 7 in das Gesamtvorhaben185
Abb. 156:	Randbedingungen für Sensorentwicklung
Abb. 157:	"Dicing-by-Thinning (DbyT)": entwickelt von Fraunhofer IZM,
	München
Abb. 158:	Chipfilm TM -Technologie
Abb. 159:	Einbaulage des Sensors
Abb. 160:	Abmessungen des Sensorchips sowie des Packages
Abb. 161:	a) Konvention für Bezeichnungen der Feldrichtungen im Luftspalt
	b) Unipolares Sensorsignal eines GMR-Vielschichtsystems195
Abb. 162:	Aufbau eines Spin-Valve-Schichtstapels
Abb. 163:	Schaltung der GMR-Elemente in Halbbrücken- und
	Vollbrückenschaltung
Abb. 164:	Abmessungen GMR-Mäanderelemente
Abb. 165:	Designkonzept Flussführungen für die Flusskomponenten in
	der x-y-Ebene199
Abb. 166:	Simulationsergebnisse für x-y-Flussführungskonzept (Feldverteilung
	aktive Elemente, unteres Flussführungselement)200
Abb. 167:	Simulationsergebnisse der innomas für x-y-Flussführungskonzept
	(passive Elemente)
Abb. 168:	Designkonzept Flussführungen für die Flusskomponenten in der z-
	Richtung201
Abb. 169:	Simulationsergebnisse für z-Flussführungskonzept
	(Feldverteilung) 202
Abb. 170:	Simulationsergebnisse der innomas für z-Flussführungskonzept
	(Abschwächungsfaktor)

Abb. 171:	Simulationsergebnisse der innomas für z-Flussführungskonzept	.204
Abb. 172:	Auslegung der Zuleitung gemäß Faraday's Induktionsgesetz	.204
Abb. 173:	Schrittweiser Aufbau des Gesamtsensors	.208
Abb. 174:	Aufbau des Sensors im Motor	.209
Abb. 175:	ToF-SIMS-Analyse des Spin-Valve-Systems	.212
Abb. 176:	TEM-Aufnahmen des Spin-Valve-Systems	.213
Abb. 177:	Einfluss der Sputter-Parameter auf die Schichtrauigkeit	.214
Abb. 178:	GMR-Kurve des gewählten Schichtsystems	.215
Abb. 179:	Hysteresekurven (VSM) der untersuchten, galvanisch abgeschie-	
	denen Ni45Fe55- (links) und Co46Fe54-Legierungen (rechts)	.220
Abb. 180:	Ni ₄₅ Fe ₅₅ -Ringkernprobe (links) und daraus gewonnene	
	Hysteresekurve	.221
Abb. 181:	Rissbildung in galvanisch abgeschiedenen CoFe-Flussführungen	
	(links und Mitte), Flussführung ohne Risse (rechts)	.221
Abb. 182:	Einfluss der Abscheideparameter Stromdichte,	
	Elektrolytzusammensetzung und äußeres Magnetfeld auf	
	Schichtspannung und -qualität	.222
Abb. 183:	Sättigungsflussdichte in Abhängigkeit der Abscheideparameter	
	Stromdichte, Elektrolytzusammensetzung und äußeres Magnetfelo	1
	auf die Sättigungsflussdichte B.	
Abb. 184:	Flussführungen für die z-Richtung; schematische Skizze (links) un	d
	Querschliff (rechts)	.223
Abb. 185:	Verlauf des Sensorsignals in x-Richtung für zwei verschiedene	
	Flussführungskonfigurationen	.224
Abb. 186:	Verlauf des Sensorsignals in z-Richtung für zwei verschiedene	
	Flussführungskonfigurationen	.225
Abb. 187:	Verlauf des Sensorsignals in x- und y-Richtung mit	
	angepasstem Design	.225
Abb. 188:	Verlauf des Sensorsignals in z-Richtung mit angepasstem Design	.226
Abb. 189:	Ergebnisse des Dünnens mittels Trennschleifen	.227
Abb. 190:	Ergebnisse des Dünnens mittels Vertikalspindel-Schleifmaschine	
Abb. 191:	Oberflächenbehandlung durch Vertikalspindel-Schleifmaschine	
	und Feinläppen	.228
Abb. 192:	Spiegelnde Oberfläche nach zusätzlichem Polierprozess	
Abb 193.	Substrataufnahme beim Thinning-by-Dicing"-Prozess	

Abb. 194:	Prozessfluss des Dünnens	230
Abb. 195:	Einzelschritte des Prozesses zum Dünnen eines Si-Wafers	230
Abb. 196:	Ergebnisse des Dünnens	231
Abb. 197:	Demonstrator für AVT	232
Abb. 198:	Verwölbung der Sensorchips durch die Eigenspannungen	
	der Aktivteile	233
Abb. 199:	Dünnen von Hallsensoren (Grundfläche: 2,5 x 4 mm²)	234
Abb. 200:	Ausgewähltes Design der Keramikplatine (Gehäuse)	234
Abb. 201:	Einbauort im Motor	235
Abb. 202:	Einbauort in Zahnnut des Motors	236
Abb. 203:	Eigene Keramikplatine und erste Tests	237
Abb. 204:	Gebondente Protypen der Sensoren	238
Abb. 205:	Sensoranordnung im Motor	239
Abb. 206:	AVT in Motor	239
Abb. 207:	Signalverlauf des z-Sensors mit ultradünnem Package im	
	Luftspalt eines KAG-Demonstrators im Vergleich zum simulier	rten
	Signalverlauf (IAL)	240

Tabellenverzeichnis

Tab. 1:	Leistungsdaten und Gesamtwirkungsgrad ECMa42x45_CoFe(I)12
Tab. 2:	Vergleich der Ergebnisse für die Kraft im Luftspalt (Simulation,
	analytische Berechnung, Messung) für $\delta = 1$ mm und $I = 0$ A16
Tab. 3:	Winkelabhängige Abschwächung des äußeren Feldes Design III62
Tab. 4:	Abschwächung des äußeren Feldes Design II63
Tab. 5:	Winkelabhängige Abschwächung des äußeren Feldes Redesign II71
Tab. 6:	Abschwächung des äußeren Feldes Redesign II71
Tab. 7:	Variationstabelle Design II C
Tab. 8:	Abschwächungsfaktoren I76
Tab. 9:	Abschwächungsfaktoren II
Tab. 10:	Vergleich Ausgangsdesign und optimiertes Design77
Tab. 11:	Wichtige Kenngrößen ausgewählter Sensoren109
Tab. 12:	Anforderungsprofil116
Tab. 13:	Frequenz- und Flussdichtebereiche118
Tab. 14:	Parameter der gewählten Varianten144
Tab. 15:	Bemessungsdaten gemäß Datenblatt ECM63x60/l
	(mit Kommutierungselektronik)157
Tab. 16:	Fertigungsfolge des Gesamtsensors207
Tab. 17:	Überblick Fertigung219

Firmenprofil KAG

Die Kählig Antriebstechnik GmbH, mit Sitz in Hannover, steht für anspruchsvolle, maßgeschneiderte und dauerhaft zuverlässige Antriebslösungen für Gleichstromantriebe ab einer Leistung von 2,5 Watt. Die KAG entwickelt, produziert und vermarktet bereits seit über 40 Jahren hochwertige Motoren. Mit einem eigenen Musterbau, einem hochmodernen Labor sowie selbst entwickelten Prüfverfahren. Die Ingenieure der KAG sind auf die schnelle und flexible Entwicklung kundenspezifischer Antriebslösungen spezialisiert. Insgesamt sorgen mehr als 160 Mitarbeiter bei der Kählig Antriebstechnik für die erfolgreiche und wirtschaftliche Fertigung von mechatronischen Antrieben im mittleren (bis 20.000 Stück) und hohen Volumensegment (bis 200.000 Stück), sowie von Kleinserien von 50 bis 500 Stück. Die vielfältigen Lösungen und Erfahrungen in den folgenden Kernbranchen bieten eine ideale Ausgangsbasis für vielfältige Antriebslösungen.

- Gebäudeautomation
- Industrieautomation
- Gerätebau
- Medizintechnik
- Weiterveredler

Neben dem Standardprogramm aus den Bereichen der bürstenbehafteten und bürstenlosen Motoren bietet die KAG auch kundenspezifische Lösungen, die den passenden Motor problemlos in das Projekt einpassen.

