

Paul Haering (Lead author), Jose M. G. Campos, Consuelo M. González, Markus Kogler, Ali Molavi, Juan S. Monreal, Emelie Nordqvist, Georg Oberholzer, Demetrius Ramette, Gema M. Ríos, Alexander Schenk

INN-BALANCE Guidebook

Improvement of Balance of Plant Components for PEM based automotive fuel cell systems

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

Lead author

Paul Haering (Steinbeis Europa Zentrum, Germany)

Contributors

Jose Manual Garcia Campos (Fundación Ayesa, Spain) Consuelo Mora González (Fundación Ayesa, Spain) Markus Kogler (AVL List GmbH, Austria) Ali Molavi (Universitat Politecnica de Catalunya (UPC), Spain) Juan Sanchez Monreal (Deutsches Zentrum für Luft- und Raumfahrt e. V., Germany) Emelie Nordqvist (China Euro Vehicle Technology AB, Sweden) Georg Oberholzer (Celeroton AG, Switzerland) Demetrius Ramette (Steinbeis Europa Zentrum, Germany) Gema Montaner Ríos (Deutsches Zentrum für Luft- und Raumfahrt e. V., Germany) Alexander Schenk (AVL List GmbH, Austria)

Paul Haering (Lead author), Jose M. G. Campos, Consuelo M. González, Markus Kogler, Ali Molavi, Juan S. Monreal, Emelie Nordqvist, Georg Oberholzer, Demetrius Ramette, Gema M. Ríos, Alexander Schenk

INN-BALANCE Guidebook

Improvement of Balance of Plant Components for PEM based automotive fuel cell systems

The research leading to these results has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 735969. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme.

Imprint

© 2021 Steinbeis-Edition

All rights reserved. No part of this book may be reprinted, reproduced, or utilised in any form by any electronic, mechanical, or other means now known or hereafter invented, including photocopying, microfilming, and recording or in any information storage or retrieval system without written permission from the publisher.

Paul Haering (Lead author), Jose Manual Garcia Campos, Consuelo Mora González, Markus Kogler, Ali Molavi, Juan Sanchez Monreal, Emelie Nordqvist, Georg Oberholzer, Demetrius Ramette, Gema Montaner Ríos, Alexander Schenk INN-BALANCE Guidebook. Improvement of Balance of Plant Components for PEM based automotive fuel cell systems

1st edition, 2021 | Steinbeis-Edition, Stuttgart ISBN 978-3-95663-193-1 This book is also available as printed version. ISBN 978-3-95663-191-7

Layout: Steinbeis-Edition Cover picture: shutterstock.com / Audio und werbung

The platform provided by Steinbeis makes us a reliable partner for company startups and projects. We provide support to people and organizations, not only in science and academia, but also in business. Our aim is to leverage the know-how derived from research, development, consulting, and training projects and to transfer this knowledge into application – with a clear focus on entrepreneurial practice. Over 2,000 business enterprises have already been founded on the back of the Steinbeis platform. The outcome? A network spanning over 6,000 experts in approximately 1,100 business enterprises – working on projects with more than 10,000 clients every year. Our network provides professional support to enterprises and employees in acquiring competence, thus securing success in the face of competition. Steinbeis-Edition publishes selected works mirroring the scope of the Steinbeis Network expertise.

218658-2021-11 | www.steinbeis-edition.de

Table of Content

Table of Figures7					
Li	st of	Tables	s	8	
Li	st of	Abbre	viations	9	
1	Intr	troduction to INN-BALANCE			
	1.1	Projec	ct rationale	11	
	1.2	Balan	ce of Plant (BoP) components	12	
	1.3	Cons	ortium	13	
	1.4	Objec	ctives of INN-BALANCE	14	
	1.5	Curre	ent market for H2 fuel cell vehicles in Europe		
		(as of	mid-2021)	15	
2	Cor	e proj	ect activities	19	
	2.1	Archi	tecture and system level optimization and design	20	
	2.2	Devel	lopment of novel BoP components	21	
	2.3	Syster	n integration, testing and evaluation	29	
	2.4	Manu	ıfacturing and cost optimization	32	
3	Pro	ject re	sults: improved INN-BALANCE components		
	and	proce	dures	33	
	3.1	Anod	e module	33	
		3.1.1	Control strategy of the anode module of the FC stack	33	
		3.1.2	Optimized ejector for automotive FC stack	36	
	3.2	Catho	ode module	37	
		3.2.1	High speed air compressor for automotive FC	37	
		3.2.2	Optimized cathode module for automotive FC stack	39	
	3.3	Therm	nal management system	39	
		3.3.1	Anti-freeze module for automotive FC	39	
		3.3.2	Cooling system for FC powertrain	42	
	3.4	Cont	rol system	44	
		3.4.1	Innovative control system for FC system	44	
	3.5 FC stack		ack	46	
		3.5.1	Compact housing of FC stack	46	

		3.5.2 Fuel cell stack POD	47
	3.6	Packaging, assembling, integration into powertrain and	
		test procedures	48
		3.6.1 Packaging, assembling and integration into powertrain	48
		3.6.2 Test procedures for automotive FC system	50
	3.7	Optimization of manufacturing process and associated	
		cost reduction	51
		3.7.1 Optimization framework and tool for the analysis of	
		cost reduction potential	51
4	Cor	nclusions and outlook	53
	4.1	Market outlook: Main drivers and barriers	53
	4.2	Future steps and note to our readers	57
Re	fere	nces	58

Table of Figures

Figure 1: Registered FCEVs in Europe (2008–2020)	6
Figure 2: Hydrogen refuelling stations in Europe	17
Figure 3: The pathway towards an European hydrogen infrastructure and	
economy	9
Figure 4: INN-BALANCE design and validation methodology	20
Figure 5: Overall simplified architecture of INN-BALANCE's automotive	
fuel cell systems	21
Figure 6: System diagram of the innovative anode module with a passive	
recirculation system	22
Figure 7: System diagram of the innovative cathode module with its	
improved turbo-compressort	24
Figure 8: System diagram of the innovative thermal management system2	25
Figure 9: INN-BALANCE cold start procedure	26
Figure 10: Main components of the fuel control system and their	
interactions	28
Figure 11: PCS receives the fuel cell test rig from CEVT	
in September 2020,	30
Figure 12: Fuel cell system implemented in the vehicle powertrain	31
Figure 13: Anode module control by AVL strategy	
(anode pressure control)	34
Figure 14: Anode module control by AVL strategy (anode purge control)3	35
Figure 15: Complete anode module including ejector from AV	36
Figure 16: High speed air compressor and associated electronics	
from CEL	38
Figure 17: Performance losses after ca. 80 F / T cycles between –10 °C /	
20 °C with and without using antifreeze	í0
Figure 18: Experimental set up of the anti-freeze module and	
the stack test bench4	í1
Figure 19: Cold start performance of the stack at −25 °C with different	
thermal management strategies (passive, active and part active)4	í3
Figure 20: AVL RPEMS used as fuel cell control unit4	í4
Figure 21: Software architecture of the control system by AVL4	í5

Figure 22: Packaging in CAD environment	48
Figure 23: Physical assembly into the vehicle	49
Figure 24: CEVT and PCS verifying the vehicle concept and	
performing the first vehicle tests at, and with support	
from, Chalmers University of Technology	50
Figure 25: Architecture of the web-based user interface	52

List of Tables

Table 1: Overview of the	INN-BALANCE consortium.	13
--------------------------	-------------------------	----

List of Abbreviations

BoP	Balance of plant
CAD	Computer-aided design
CFD	Computational fluid dynamics
DC	Direct current
FC	Fuel cell
FCEV	Fuel cell electric vehicle
FCH JU	Fuel cells and hydrogen joint undertaking
GHG	Greenhouse gases
H2	Hydrogen
HIL	Hardware in the loop
HW	Hardware
ICE	Internal combustion engine
NVH	Noise, Vibration, Harshness
PEM	Proton-exchange membrane
RPEMS	Rapid prototyping engine management system
SW	Software
THDA	Total harmonic distortion analysis
TRL	Technology readiness level
WLTC	Worldwide harmonized light vehicles test cycles

Abstract

INN-BALANCE in a nutshell

Fuel cells are a mature technology ready for scale-up in the automotive market. It is now about advancing manufacturing through reducing costs of production, while increasing the overall efficiency and reliability of fuel cell systems in cars. These are the goals of INN-BALANCE.

The EU funded research and innovation project focuses on the Balance of Plant components, developing new features for the supply of hydrogen and air to the stack and improved concepts for the thermal management and advanced control architecture of the fuel cell system.

Project duration: 01/2017–10/2021 Participant countries: Austria, Germany, Spain, Sweden and Switzerland

INN-BALANCE guidebook

The present guidebook presents the main project activities and the main results generated by the nine partners of INN-BALANCE. It also contains an overview of the current market for hydrogen vehicles in Europe and provides an outlook to future challenges in this field. The main target groups of this document are vehicles OEMs and their suppliers, fuel cell integrators and manufacturers, BoP manufacturers, research institutions, public authorities such as municipalities and policy makers and other stakeholders from the fuel cell, automotive, energy and transport sectors such as utilities, clusters / networks.

Fuel cells are a mature technology ready for scale-up in the automotive market. It is now about driving manufacturing forward by reducing production costs, while increasing the overall efficiency and reliability of fuel cell components and systems.

INN-BALANCE is an EU project funded by the Fuel Cells and Hydrogen 2 Joint Undertaking tackling this question. INN-BALANCE focuses on the improvement of Balance of Plant (BoP) components for automotive fuel cell systems through design optimisation, testing of innovative components and modules, and the assembly and testing of the complete fuel cell system under laboratory and automotive conditions. Nine partners from five countries are involved in the project.

Balance of Plant components include compressors, pumps, sensors, heat exchangers, humidifiers, recirculation blowers, etc. In INN-BALANCE, four different modules, each consisting of several BoP components were studied and optimised: the cathode module and the anode module supplying respectively air and hydrogen to the fuel cell stack, the thermal management system keeping all components at a desired temperature and the control system ensuring smooth operation.

This guidebook presents the main project activities and results generated during the project. It also contains an overview of the current market for hydrogen vehicles in Europe and provides an outlook to future challenges in this field. The main target groups of this document are vehicles OEMs and their suppliers, fuel cell integrators and manufacturers, BoP manufacturers, research institutions, and public authorities.

ISBN 978-3-95663-193-1

